

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 180-189www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311180189 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 180

Hand Gestures Controller for Drone
Prakaas M, Pavithra N, Sunil Saravanan J, Suriya K,

Veeramanikandan R
Hindusthan college of engineering and technology, Coimbatore.

Hindusthan college of engineering and technology, Coimbatore.

Hindusthan college of engineering and technology, Coimbatore.

Hindusthan college of engineering and technology, Coimbatore.

Corresponding author: Veeramanikandan R

-- ---------------------

Submitted: 01-11-2021 Revised: 06-11-2021 Accepted: 09-11-2021

--- ----------

INTRODUCTION:
Due to its adaptability in performing any

type of airborne duty, a drone is one of the most

complex flying devices. The gesture-based control

interface has a lot of potential for more natural,

intuitively comprehensible, and customizable

human-machine interaction, and it can expand the

capabilities of common graphical and command

line interfaces that we use today with the mouse

and keyboard.As a result, advanced hardware and

software approaches to hand-gesture recognition

are critical for a wide range of 3D applications,

including computer and robot control, interaction

with a computer-generated environment (virtual or

augmented reality), sign language comprehension,

gesture visualization, game control, and the

enhancement of disabled people's communication

abilities, among others. Hand Gesture Controlled

Drone's primary goal is to eliminate the weighted

Radio-Controller.The Radio-Controller, which can

be worn in the hand and is used to control the

drone's movement, flight, and other functions, is

usually replaced by a glove (Transmitting Circuit).

For peripheral memory allocation or, to put it

another way, for the storage and installation of the

interface, we used an Arduino uno in the

transmitter. The interface was created in such a

way that the drone may flip, accelerate, and change

direction in microseconds. After then, the uno is

directed to the Sensor (MPU 6050) and finally to

the flight controller (APM).

HAND CONTROLLER:

The hand controller is the feature that

distinguishes our system from other quadcopter

systems that use joysticks. This controller features

a highly straightforward, basic technique of

piloting, allowing even individuals with no prior

expertise with UAVs to fly the system within an

hour of acquiring it. To avoid using a big battery,

the hand controller must be able to run for at least

10 minutes without needing to be recharged.

The hand controller will be able to accommodate

most adult human hands and will be durable

enough to survive a fall of 1.5 meters. Because

speed is crucial in an emergency situation, any

setup for the hand controller,

including calibrating the motion/position sensor,

will take less than 5 minutes. To keep the pilot

from being fatigued while piloting the quadcopter,

the controller will be under 250 grammes in

weight.

There will be specialized command such as,

 Takeoff

 Stop

 Hover

which will make complex quadcopter

functions easier to understand. Specialized

commands represented by buttons and a flex sensor

should take precedence over movement controls

while the pilot is piloting the quadcopter.

When the quadcopter is hovering, for

example, the pilot can move their hand without

sending the action to the quadcopter. Most

crucially, the hand controller must be able to

translate data from the movement/position sensor,

buttons, and flex sensor into strings that meet the

drone's chosen format.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 124-135www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311124135 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 181

GESTURE DESIGN:

The throttle would be controlled by

pressing a button and repeating the forward and

backward commands, as seen in the previous

design. The throttle was supposed to be controlled

by the vertical movement of the hand, but we

changed our minds. Because we couldn't acquire a

constant signal from the gyroscope on the 9-DOF

board, we decided against using the original design.

Because the flex sensor's main duty is to initialize

the takeoff function, we opted to use it to fix this

problem.

SCHEMATIC OF HAND CONTROLLER:

If the flex sensor is engaged while the

hand controller is activated and reading positional

data, the throttle will increase until the flex sensor

is unengaged or the hand is flipped, at which point

the throttle will decrease. This will extend the

range of the quadcopter without requiring the use

of the hover special command.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 180-189www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311180189 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 182

Gestures to control a quadcopter,

a) moves forward.

b) moves backward.

c) moves up.

d) moves down.

e) turn right.

DEVELOPMENT OF A WEARABLE GLOVE

SYSTEM FOR RECOGNITION:

The creation of a wearable gesture recognition

system that includes sensor-integrated glove

hardware and hand gesture detection software for

human control of computer-based objects and

devices.

Our gesture recognition method consists of three

steps:

(1) tracking hand movement trajectories along the

coordinate axes x(t), y(t), and z(t);

(2) creating a recognizable model for the gesture

G[x(t), y(t), z(t)] using the tracked trajectories; and

 (3) comparing the recognizable gesture model with

the reference gesture patterns Ei [x(t), y(t), z(t)] by

computing the similarity

These wearable glove systems and

gesture-based software were utilized to create a

control interface for manipulating a quadcopter

model in the V-Rep simulator, exhibiting

successful real-time gesture-based control of the

quadcopter position and orientation with six

different dynamic gestures.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 124-135www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311124135 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 183

The functional diagram of wearable glove-system

for gesture-based control of UAV.

In order for our system to recognize an unfamiliar

gesture, we need the following information:

1) Pitch, roll, and yaw hand rotations relative to the

surface;

2) Acceleration projections on each coordinate

axis;

3) The numerical value of each finger's bending

The integrated sensor MinIMU-9 v2, which

consists of an accelerometer, magnetometer, and

gyroscope, and measures projections to determine

pitch, roll, and yaw, can be used to solve objectives

1 and 2.The objective 3 is reached using the flex

sensors.

We designed a gesture-based control interface for

the wearable glove-based system, combining

sensors with the Arduino Nano controller,

Bluetooth (BT) wireless data transmission, and a

Java application.

SOFTWARE DESIGN:

PERIODICALLY SENDS THE MOTION

 Pin Type: I2C protocol (SDA and SCL)

19Gesture Controlled Quadcopter System Receives

input from the 9-DOF sensor.

 The data from the sensor is obtained using

the Arduino library.

 Converts data to a String that may be sent.

 This is a cyclic function that executes

every few milliseconds.

 An enable variable is used to control it.

HOVER BUTTON:

 Pin Type: Digital I/O, Interrupt message

 If the quadcopter is currently in the air, a

particular message is sent to the base telling it to

hover.

 The microcontroller's signal LED should

be lit to indicate that the controller is off.

 Until the hand is pulled out of Hover

mode, no movement will be relayed to the

controller.

 This mode allows you to command the

quadcopter to land.

STOP BUTTON:

 Pin Type: Digital I/O, Interrupt message

 If the quadcopter is currently in the air, it

receives a special message instructing it to land.

 The controller will no longer be able to

move.

TAKE OFF FLEX SENSOR:

 Interrupt message, Analog Pin Type

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 180-189www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311180189 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 184

 Because the data is analogue, there will be

a "bentness" threshold that indicates the start

function.

 After the quadcopter has completed the

task, this function allows the hand controller to

read the motion of the hand.

 This will begin the quadcopter's takeoff

function, which will take it to a height of roughly a

meter before hovering.

The pseudo code that implements the functions

described above is listed below:

INPUT DATABASE:

The first requires the employment of a third-party

device that can reliably recognize non-verbal

gestures beforemapping them into appropriate

digital commands.

The Leap Motion Controller and Microsoft Kinect

are two examples of such devices.

While the Leap Motion Controller is

meant to catch hand motions only, the Kinect is

capable of accurately capturing complete body

motion. While this method provides excellent

accuracy in gesture or body motion recognition, it

requires a computer to function, hence portability is

a limitation.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 124-135www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311124135 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 185

Body movement is recognized in real-time using

machine vision in the second direction, allowing

the drone to be controlled without the use of any

additional equipment. Eye gazes, face expressions,

hand gestures, and combinations of these have all

been studied by researchers.

COMPONENTS:

LSM9DS1 Accelerometer + Gyro + Magnetometer

With this all-in-one 9-DOF sensor, you

can detect movement, direction, and orientation in

any Arduino project. Three sensors are housed

within the chip, one of which is a traditional 3-axis

accelerometer that can tell you which way is down

towards the Earth (by sensing gravity) or how fast

the board is accelerating in 3D space. The other is a

three-axis magnetometer, which can determine

magnetic north by detecting where the strongest

magnetic force is coming from. A 3-axisgyroscope

that can measure spin and twist is the third

component.

The LSM9DS1 is not the same set of sensors as

the LSM9DS0.

• The LSM9DS0 accelerometer has ranges of

2/4/6/8/16 g. The LSM9DS1 has a weight

range of 2/4/8/16 g (no 6 g range).

• The LSM9DS0 magnetometer has gauss

ranges of 2/4/8/12 gauss. The LSM9DS1 has

ranges of 4/8/12/16 gauss.

• As a result, the LSM9DS0 has a 2-gauss low

range and a 16-gauss high range.

• The gyros LSM9DS0 and LSM9DS1 have the

same 245/500/2000 dps ranges.

BREAKOUT BOARD:

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 180-189www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311180189 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 186

The breakout board comes completely

constructed and tested, as well as some extra

header for usage on a breadboard. We put the

popular power data pins on one side and the

interrupt pins on the other side for a neat &

compact breakout, and we used four mounting

holes to provide a solid connection.

Power Pins:

The breakout requires 3V electricity to

power the sensor. We placed a 3.3V regulator on

the board because many clients use 5V

microcontrollers like Arduino. Because of its

extremely low dropout, it can be powered from

3.3V to 5V. The power pin is Vin. We added a

voltage regulator on board to safely convert 3-

5VDC to 3 VDC because the chip uses 3 VDC. To

power the board, use the same voltage as your

microcontroller's logic level - for example, for a 5V

microcontroller like Arduino, use 5V 3V3 - this is

the 3.3V output from the voltage regulator, and you

can pull up to 100mA from it if you like.

GND - a place where logic and power meet. Pins

for I2C communication

SCL - I2C clock pin, which should be connected to

the I2C clock line on your microcontroller. This pin

has a 10K pullup and is level adjusted, allowing it

to be used with 3-5V logic.

SDA - I2C data pin, which should be connected to

the I2C data line on your microcontroller. This pin

has a 10K pullup and is level adjusted to allow for

3-5V logic.

SPI Pins:

• SCL - commonly known as the SPI clock pin, this

pin has been level shifted to allow 3-5V logic

input.

• SDA - commonly known as the SPI MOSI pin,

this is a level-shifted SPI MOSI pin that allows you

to use a 3-5V logic input.

• CSAG - this is the Accelerometer Gyro Sub-Chip

Select, which has been level-shifted to allow for 3-

5V logic input.

• CSM - this is the Magnetometer sub-chip Select,

which has been level-shifted to allow 3-5V logic

input.

• SDOAG - this is the Accelerometer Gyro sub

chip's MISO pin; it's 3V logic out, but 5V logic

chips can read it well.

• SDOM/DOM- This is the MISO pin on the

Magnetometer sub chip; it's 3V logic out, but 5V

logic chips can read it well.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 124-135www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311124135 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 187

Interrupt &Misc Pins:

• DEN - this is a pin that is designed to be used to

enable/disable the Gyro dynamically. We don't

have any documentation on it, but we'll break it

down for you nonetheless.

• INT1 & INT2 - The accelerometer/gyro sub chip

interrupts. We don't have any library support for

these, so look at the datasheet to see what you can

do with them. They're logic outputs with a voltage

of 3V.

• DRDY - this is the data ready output from the

accelerometer/gyro sub chip. We don't have

particular library support for them, therefore

consult the datasheet for information on how to

enable this pin using the registers. It's a logic

output with a voltage of 3V.

• INTM - This is the magnetometer subchip's

interrupt. We don't have any library support for it,

so look at the datasheet to see what you can do with

it. It's a logic output with a voltage of 3V.

The Jumpers:

A trio of two-way surface mount jumpers are

revealed when the LSM9DS1 breakout is flipped

over. Each of these jumpers is finished with a

zipper closure. They're there to put the LSM9DS1

in I2C mode automatically.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 180-189www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311180189 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 188

Through a 10k resistor, each of these jumpers

pushes a pair of pins up to VDD. The resistor is

connected to the central pad of the jumper, while

the edge pads are connected to a pin. The top

jumper links CS AG and CS M to a pull-up, which

activates I2C mode on the LSM9DS1. The center

jumper activates SDO AG and SDO M, which sets

the chip's I2C address. Finally, the far-left jumper

connects the I2C communication pins SDA and

SCL using pull-up resistors.

These jumpers are designed to make utilizing the

board as simple as possible, with the least number

of wires possible. The four SDO and CS pins can

be ignored if you're utilizing I2C with the breakout.

FUNCTIONALITY:

Using the Arduino Library

Setup Stuff:

#<span

class="keyword include">include<span

class="string"><SPI.h> // SPI library included for

SparkFunLSM9DS1

<span class="meta

preprocessor">#<spanclass="keyword

include">include<span

class="string"><Wire.h> // I2C library included for

SparkFunLSM9DS1

#<span

class="keyword include">include<span

class="string"><SparkFunLSM9DS1.h> // Spark

Fun LSM9DS1 library

Make sure the SPI and Wire includes are above the

"SparkFunLSM9DS1"

Constructor:

A new instance of the LSM9DS1 class is created

by calling the function Object () [native code].

You'll use the instance to control the breakout from

there on once you've built it. This one line of code

is normally placed in your sketch's global section.

constructor should be left without any parameters:

// Use the LSM9DS1

class to create an object. [imu] can be

// named anything, we'll

refer to that through the sketch.

LSM9DS1 imu;

Setting Up the Interface:

There are numerous settings available on the

LSM9DS1. Some are insignificant, while others are

vital. The communication interface and the device

addresses are the three most important things we'll

need to specify.

// SDO_XM and SDO_G

are both pulled high, so our addresses are:

#<span

class="keyword define">define<span

class="entity name">LSM9DS1_M<span

class="constant numeric">0x<span

class="constant numeric">1E // <span

class="keyword define">Would<span

class="entity name">be<span

class="keyword define">0x1C<span

class="entity name">if<span

class="keyword define">SDO_M<span

class="entity name">is LOW

#<span

class="keyword define">define<span

class="entity name">LSM9DS1_AG<span

class="constant numeric">0x<span

class="constant numeric">6B // <span

class="keyword define">Would<span

class="entity name">be<span

class="keyword define">0x6A<span

class="entity name">if<span

class="keyword define">SDO_AG<span

class="entity name">is LOW

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 124-135www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311124135 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 189

...

imu. Settings. device. COMM Interface<span

class="keyword operator">=

IMU_MODE_I2C; // Set

mode to I2C

imu. Settings. device. mAddress <span

class="keyword operator">=

LSM9DS1_M; // Set mag

address to 0x1E

imu. Settings. device. agAddress <span

class="keyword operator">=

LSM9DS1_AG; // Set ag

address to 0x6B

Alternatively, if you're using SPI mode, the imu.

Settings. device. mAddress and imu. Settings.

device. agAddress values become the chip select

pins.

imu. Settings. device. COMM Interface<span

class="keyword operator">=

IMU_MODE_SPI; // Set

mode to SPI

imu. Settings. device. mAddress <span

class="keyword operator">=<span

class="constant numeric">9; <span

class="comment">// Mag CS pin connected to

D9

imu. Settings. device. agAddress <span

class="keyword operator">=<span

class="constant numeric">10; <span

class="comment">// AG CS pin connected to

D10

Configuring any value from the imu. Settings.

device can't take place in the global are of a sketch.

If you get a compilation error, like 'imu' does not

name a type, you may have those in the wrong

place -- put them in setup ().

begin ()-ing and Setting Sensor Ranges:

To initialize the IMU, call the begin () member

function once you've created the LSM9DS1 object

and set its interface.

The begin () function attempts to interact with and

initialize the sensors using the settings you adjusted

in the previous phase. To see if the setup was

successful, look at the return value of begin (); if

something goes wrong, it will return 0.

if (<span

class="keyword operator">! imu. <span

class="function call">begin ())

{Serial. <span class="function

call">println ("Failed

to communicate with LSM9DS1.");

 Serial. <span class="function

call">println (<span

class="string">"Looping to infinity.");

while (<span

class="constant numeric">1);}

Once begin () has returned a success, you can start

reading some sensor values!

Reading and Interpreting the Sensors:

readAccel (), readGyro (), and readMag ()

The readAccel (), readGyro (), and readMag ()

functions poll the LSM9DS1 for the most recent

measurements from each of the three sensors.

When the function completes, it will update a set of

three class variables with the sensor data you want.

readAccel () will update the values for axe, ay, and

az, readGyro () will update the values for gx, gy,

and gz, and readMag () will update the values for

mx, my, and mz.

imu. <span class="function

call">readAccel (); <span

class="comment">// Update the accelerometer

data

Serial. <span

class="keyword">print(imu.ax); <span

class="comment">// Print x-axis data

Serial. print

(", ");

Serial. print (imu.

ay); // print y-axis

data

Serial. print

(", ");

Serial. <span class="function

call">println(imu.az); <span

class="comment">// print z-axis data

An example of reading and printing all three

axes of accelerometer data.

Those values are all signed 16-bit integers,

meaning they'll range from -32,768 to 32,767.

calcAccel (), calcGyro (), and calcMag ()

The library keeps track of each sensor's scale and

provides some helper methods to make converting

raw ADC readings to real units as simple as

possible.

The functions calcAccel (), calcGyro (), and

calcMag () all take a single parameter, a signed 16-

bit integer, and convert it to the appropriate unit.

All of them return a float value.

imu. readGyro

(); // Update gyroscope

data

Serial. print (imu.

calcGyro

(imu. gx)); // Print x-axis

rotation in DPS

Serial. print

(", ");

Serial. print (imu.

<span class="function

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 180-189www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311180189 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 190

call">calcGyro(imu.gy)); <span

class="comment">// Print y-axis rotation in

DPS

Serial. print

(", ");

Serial. println

(imu. <span class="function

call">calcGyro(imu.gz)); <span

class="comment">// Print z-axis rotation in

DPS

Setting Sensor Ranges and Sample Rates:

The sensor ranges and output data rates are two of

the most regularly modified properties in the IMU.

Again, by setting a value in the settings struct,

these variables can be customized.

For example, to set the IMU's accelerometer range

to ±16g, gyroscope to ±2000 °/s, and magnetometer

to ±8 Gs.

imu.settings. accel. scale <span class="keyword

operator">=<span class="constant

numeric">16; //

Set accel range to +/-16g

imu.settings. gyro. Scale <span class="keyword

operator">=<span class="constant

numeric">2000; <span

class="comment">// Set gyro range to +/-

2000dps

imu.settings.mag. scale. scale <span

class="keyword operator">=<span

class="constant numeric">8; <span

class="comment">// Set mag range to +/-

8Gs

imu. begin ();

// Call begin to update the

sensor's new settings

The data rates for the output data are a little more

ethereal. The update rate can be anywhere between

1 and 6, with 1 being the slowest and 6 being the

fastest.

REFERNCES:
[1]. Quadcopter control using Arduino

microcontroller, Ghosh, Arijit in 2018.

[2]. The Hand gesture-based controller interface

with wearable glove system, Berezhnoy,

Vladislav; Popov, Dmitry; Afanasvey, Ilya;

Mavridis, Nikolaos in 2018.

[3]. Implementation of Arduino based hand

motion control drone, Dubey, Abhishek

Kumar in 2020.

[4]. Gesture controlled quadcopter system, Xu,

Anthony yang; Crawford, kendra; Yang,

Wenhao in 2018.

[5]. Vision based control by hand-directional

gestures converting to voice, Malallah, fahad

layth; Khaled, Khaled N. Yasen Mustafa;

Abdulameer, Sadeer in 2018.

[6]. AdafruitLSM9DS0

Accelerometer+Gyro+Magnetometer 9-DOF

Breakouts, Edt, PM in 2014.

[7]. Hand gesture controller drones; An open

library, Natarajan, kathiravan; Nguyen,

Truong Huy D; Mete, mutlu in 2018.

